Chapter 8 Numbers but not as we knowthem(第1页)
Chapter8hem
Realandbers
Itistemptingthallthisfrettingaboutparticularequationsandsimplydeclarethatwealreadyknowwhattherealheyaretheofallpossibledecimalexpansions,bothpositiveaheseareveryfamiliar,inpractiowhowtousethem,andsowefeelonsafegrouilweasksomeverybasiaiureofhatyouadd,subtract,multiply,a,forexample,howareyousupposedtomultiplytwoinfinitendecimals?Wedependondecimalsbeihsothatyou‘startfrht-hathereisnosugwithaninfinitedecimalexpansion。Ite,butitisplicatedbothintheoryandinpraumbersystemwhereyletoexplainholydoesisfactory。
Youmayioionsraisedaboryoumaygrowimpatientwithalltheiioobemakingtroubleforourselveswhenpreviouslyallwassmoothsailing。Thereisaseriouspoihematisappreciatethat,whehematicalobjetroduced,itimportanttostructthemfromkicalobjects,theway,foriioofaspairsers。Inthisway,wemaycarefullybuilduptherulesthatgovereemandkafoundatiowillebatuslater。Forexample,therapiddevelopmentofcalculus,whichwasbornoutofthestudyofmotioospectacularresults,suchasprediovemes。Houlationofihingsasiftheywereimesprovidedamazinginsightsaimespatentingyourmathematicalsystemsonarmfoundation,wehowtotellthedifferenpractice,mathematisoftenindulgein‘formal’manipulatiooseeifsheoffieisworthyofattebeprorouslybygoingbacktobasidbyihathavebeeablishedearlier。
ThisiswhyJuliusDedekind(1831-1916)tookthetroubleofformallystrugtherealembasedoisoasDedekindcutsofthereallimathemati,however,tosuccessfullydealwiththedilemmacausedbytheexisteionalnumberswasEudoxusofidus(fl380BC)whoseTheoryofProportionsallowedArchimedestousetheso-calledMethodofExhaustiorouslyderiveresultsonareasandvolumesofcurvedshapesbeforetheadventofcale1,900yearslater。
Thefiheheimaginaryunit
13。Additionofbersbyaddiedlis
&iberspresentsitselfveryheplexplahinkofthebera+biasbeihepoint(a,b)intheateplawobersz=(a,b)andw=(c,d),wesimplyaddtheirfirstariestiveusz+w=(a+c,b+d)。Ifwemakeuseofthesymboli,wehaveforexample(2+i)+(1+3i)=3+4i。
Thisdstowhatiskoradditionintheplaedliors)areaddedtogether,toptotail(seeFigure13)。Webeginatthein,whichhasatesof(0,0),andinthisexamplewelaydownourfirstarrowfromtheretothepoint(2,1)。Toaddtheedby(1,3),wegotothepoint(2,1),anddrawanarroresentsmoving1unitrightialdire(thatisthedireoftherealaxis),and3unitsupiioical(theimaginaryaxis)。Weendupatthepointwithates(3,4)。Inmuchthesameway,weesubtrabersbysubtragtherealandimaginarypartssothat,forexample,(11+7i)-(2+5i)=9+2i。Thisbepicturedasstartingwiththevector(11,7),andsubtragthevector(2,5),tofinishatthepoint(9,2)。
Multipliisaer。Formallyitiseasytodo:wemultiplytwoberstogetherbymultiplyis,rememberingthati2=-1。AssumiributiveLawuestohold,whichisthealgebraicrulethatallowsustoexpasintheusualway,thenmultipliproceedsasfollows:
(a+bi)(c+di)=a(c+di)+bi(c+di)=
ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i
Byusiherthanspeberswethesameway,fieofageneraldivisionofbersiheirrealandimaginarypartsaswehavedoneabeneralultipli。Hastheteiqueisuhereisnoproduorizetheresultingformula。
14。Thepositionofaberinpolarates
Multiplihasageometriterpretationthatisrevealedifwealterouratesystemfromtheularatestopolarates。Inthissystem,apointzisonspecifiedbyanorderedpairofnumbers,riteas(r,θ)。Thehedistanceofourpointzfrihistextthepole)。Thereforerisaivequantityandallpointswiththesamevalueofrformacircleofradiusrtredatthepole。Weusethesedateθtospethiscirclebytakiheangle,measuredinananti-clockwisediretherealaxistothelihenumberriscalledthemodulus(pluralmoduli)ofz,whiletheangleθiscalledtheargumentofz。
Supposewobers,zandw,whosepolaratesare(r1,θ1)and(r2,θ2)respectively。Itturnsoutthatthepolaratesoftheirproductzwtakeonasimpleandpleasingform。Theruleofbinationbeexpressedlyine:themodulusoftheproductzwistheproduoduliofzandw,whiletheargumentofzwisthesumumentsofzandw。Insymbols,zolarates(r1r2,θ1+θ2)。Themultiplioftherealnumbersissubsumeduhismeneralwayoflookingatthings:apositiverealnumberr,forinstance,haspolarates(r,0),aiplybyaheresultistheexpected(rs,totherealnumberrs。
Muchmoreofthecharaultipliplexnumbersisrevealedthroughthisrepresentation。Thepolaratesoftheplexunitiaregivenby(1,9lesarenreesinsuchthenaturalmathematiitoftheradian:thereare2πradiansiaturnofoneradiaomovialongthecirceoftheuredatthein。Oneradianisabout57。3°。)Ifwenolexnumberz=(r,θ)andmultiplybyi=(1,90°),wefindthatzi=(r,θ+90°)。Thatistosay,multiplibyidstorotatiharightaheplexplaherwords,therightamostfualgeometricidea,berepresentedasanumber。
&heeffectofaddingormultiplyingbyaberzosinagiveheplexplauredgeometrically。Imagineanyregionyoufantheplaoeverypointinsideyion,wesimplymoveeatthesamedistanddireihearrow,orvectorasweoftencallit,represehatistosaywetraosomeotherpositionintheplatheshapeandsizeareexatained,asisitsattitude,bywhitheregionhasnoatioion。Multiplyiinyionbyz=(r,θ)hastwoeffects,however,onecausedbyraherbyθ。Themodulusofeatintheregionisincreasedbyafactorr,soallthedimensionsionareincreasedbyafactorofralso(soitsareaismultipliedbyafactorofr2)。Ofcourse,ifr〈1thenthis‘expansioerdescribedasatraasthenewregionwillbesmallerthantheinal。Theregionwill,however,maintainitsshape-foririangleismappedontoasimilartriahesameanglesasbefore。Theeffectofθ,aslaiorotatetheregihaiclockwiseaboutthepole。Theheninmultiplyingallpointsionbyzistoexpandandrionaboutthepole。Thenewregionwillstillhavethesameshapeasbeforebutwillbeofadiffereerminedbyr,andwillbelyingiitudeasdetermiionangleθ。
Furtherces
Thereareahostofappliplexheelemeheiweeangularandpolarrepresentatiooplayinasurprisingandadvantageousway。Foriandardexerciseforstudeionofimportahaturallybytakingarbitrarybersofunitmodulus(i。e。r=1),andgpbularandthenpolarates。Equatiwoformsoftheaherigoion。
&hesameinpives:
&herealandimaginarypartsofthetwoversionsofthisothenpainlesslyyieldsthestandardanglesumformulasory:
&ively,thepolarformforultiplibederivedusirigoriulas。Ihatwehavestatedhere,withoutproof,formultiplipolarformisusuallyrstderivedfrularformbyusingtrigoriulas。
Muesquiteeasilynowastheuseofbersrevealsabetweeialorpowerfundtheseemirigoris。Withoutpassingthroughtheportalofferedbythesquarerootofmiheaybeglimpsed,butheso-calledhyperbolisarisefromtakingwhatareknownastheevenandoddpartsoftheexpoialfun。Torititytheredsoi,exceptperhapsfn,involvingthesehyperbolis。Thisbeveriedeasilyinanyparticularcase,buttheionremainsastowhyitshouldhappenatall。Whyshouldthebehaviourofoneclassoffunsbesoirroredinanotherediamanner,andofsuchdifferentcharacter?Resolutioeryisbywayoftheformulaeiθ=θ,whichshooialandtrigorisareintimatelylihuseoftheimaginaryuniti。Ohisisrevealed(foritissurprisingandisbynomeansobvious),itbeesclearthatresultsalongthelinesdescribedareihrcalsusieriohisequatioingrealandimaginaryparts。Withouttheformula,however,itallremainsamystery。