Chapter 6 Belowthe waterline of the number iceberg(第1页)
Chapter6Belowthewaterlihenumbericeberg
Introdu
However,oatsofthe19thturywasthefullrealizatioruedomaioratheristwo-dimensional。Theplahebersisthenaturalarenaofdisuatics。Thishasbeenbroughthometomathematidstiststhroughproblemsolviocarryouttheiioosolvereal-worldproblems,manyofwhichseemtobeonlyaboutordinaryumbers,itbeesoexpandyournumberhorizoionastohowthisextradimensieswilletowardstheendofthisdbeexploredfurtherinChapter8。
&ralportionofthenumberlinenear0
Plusesandminuses
&egersisthenameappliedtothesetofallwholeiveive,ahisset,oftensymbolizedbytheletterZ,isthereforeihdires:
{…-4,-3,-2,-0,1,2,3,4,…}。
&egersareoftenpicturedaslyingatequallyspatsalongahorizontalnumberliheorderiheadditioweoknowiodoarithmeticwiththeintegersbesummarizedasfollows:
(a)toaddativeinteger,-m,wemovemspacestotheleftiion,aherightforsubtra;
(b)tomultiplyanintegerby-m,wemultiplytheintegerbym,andthengesign。
Inotherwords,thedireofadditionandsubtraegativeheoppositetothatofpositivenumbers,whilemultiplyinganumberby-1ssitssigive。Forexample,8+(-11)=-3,3×(-8)=-24,and(-1)×(-1)=1。
Youshouldroubledbythislastsum。First,itisreasomultiplyiivenumberbyapositiveoneyieldsaivea(a)issubjeterest(apositivemultipliergreaterthaeisgreaterdebt,thatistosayalargerivenumber。Weareallwellawareofthis。Thatmultipliofaiveherivenumbershouldhavetheoppositeoute,thatisapositiveresult,wouldthenappeart。Thefactthattheproductoftwoivenumbersispositivereadilybegivenformalproof。Theproofisbasedoioourexpaemoftheiosubsumetheihenaturalhattheaugmeemshoulduetoobeyallthenormalrulesofalgebra。Iooftwoivesfollowsfromthefayipliedbyzeroequalszero。(Thistooisnotanassumptionbutratherisalsoaceofthelawsofalgebra。)For>
-1×(-1+1)=-1×0=0;
&henmultiplyoutthebrackets,weseethatiheleft-handsideequalzero,(-1)×(-1)musttaketheoppositesignto(-1)×1=-1;inotherwords(-1)×(-1)=1。
Fradrationals
andsowerecyptiaion:
Thiskindoftrickisofteosimplifyahatinvolvesaingprople,siderthefollowier:
Bysquaring,andthensquaringagai-handsidebeesa4,whiletheexpressiogives:
&followsthe5isanothercopyoftheexpressionfora,weia4=20asothata3=20or,ifyouprefer,aisthecuberootof20。WewillthisteiqueagaininChapter7wheroduceso-tiions。
&heclassoffrasprovideuswithallthenumberswecouldeverneed?Asmeheofallfras,togetherwiththeirhesetofnumbersknowionals,thatisallresultfromwholeheratiosbetweeheyareadequateforarithmetithatanysuminvolvingthefourbasicarithmeticoperationsofaddition,subtraultipliddivisioakeyououtsidetheworldofrationalnumbers。Ifywiththat,thissetofnumbersisallwerequire。However,weexplaiseberssuchasaabovearenotrational。
Irrationals
Argumentsalongtheselinesallowustoshowthatquitegenerally,whehesquareroot(orihecubeherroot)ofaheaawholenumber,isalwaysirrational,thusexplainingwhythedecimaldisplaysonyourcalevershpatterocalculatesucharoot。
Thisproblemremaiouclassicaltimes。Thattheansweriscuberootof2liesoutsidetheraheeutoolswasoledin1837byPierreWantzel(1814–38),asitrequiresaprecisealgebraicdesofossibleusingtheclassicaltoolsinThereasosolutionisinthebillordertoseethatthecuberootof2isanumberofafuallynothardtosee。Anysolutionnhastohavethefordifferedoesioshowingthatyouepositivepowersrandsaheremanevermanufactureacuberootoutofsquarerootsandrationals。factorsarecollectedtogetherintoasiegerWhenputthatway,theimpossibilitysoundsmoreplausible。divisibleby3or5。IfwefirstfothepossibleHowever,thatinnowaystitutesaproof。
Traals
Withintheclassofirratiohemysteriousfamilyoftraalhesearisethroughtheordinarycalsofarithmetidtheextraofroots。Forthepreitioiheentaryofalgebraiumbers,whicharethosethatsolvesomepolyionwithis:forexamplex5-3x+1=0issuequatioraalsaretheheon-algebraiumbers。
Itisnotatallclearthatthereareanysuumbers。However,theydoexistandtheyformaverysecretivesociety,withthoseinitnotreadilydivulgingtheirmembershipoftheple,thenumberπisarathisisnotafactthatitopewillbeexplaichapterwhehenatureofiisthat‘most’raal,irecise。
Anotherwayinwhichthemysteriousearisesisthroughthesumofthereciprocalsofthefactorials,andthisgivesawayofgetoahighdegreeofaccuracyasthisseriesvergesrapidlybecauseitstermsapproachzeroveryquideed:
Therealandtheimaginary
&vechaptersofthisVeryShortIntroduainlywithpositiveintegers。Weemphasizedfactorizatioiesofintegers,whichledustoumbersthathaveorizations,rimes,asetthatoccupiesapivotalpositioography。Wealsolookedatparticulartypesofnumbers,suchastheMersenneprimes,whitimatelyectedwithperfeumbersandtooktimetointroduespecialclassesofiareimportantingaturallys。Throughoutallthis,thebackdropwasthesystemofintegers,whicharetheumbers,positive,ive,andzero。
Inthischapterwehavegoegers,rsttotheratioions,positiveaheionals,andwithintheclassofirrationalswehaveideraalheunderlyingsysteminwhichallthisistakihesystemoftherealnumbers,whibethoughtofastheofallpossibledecimalexpansions。Anypositiverealnumberberepreseheformr=n。a1a2…,wherenisaiveihedetisfollowedbyarailofdigits。Ifthistraileventuallyfallsintpattern,thenrisinfaalandwehaveshownhowtovertthisrepresentationintoanordinaryfra。Ifnot,thenrisirrational,sotherealnumberseiinctavours,therationalaional。
Inourmathematiatioeherealnumbersasdingtoallthepointsalongthenumberlifromzero,thtforthepositivereals,afativereals。Thisleavesuswithasymmetricalpicturewiththeiverealnumbersbeingamirreofthepositivereals,andthissymmetryispreservedwhehadditionandsubtra–butnotwithmultiplicewepasstomultipli,thepositiveaivenumbersnoloatusasthenumber1isehapropertythatnoothernumberpossesses,foritisthemultiplicativeidehat1×r=r×1=rforanyrealipliby1fixesthepositionofainultipliby-1ssasmirreonthefarsideof0。Oiplitersthese,thefualdiffereheiveaivenumbersarerevealed。Inpartiegativenumberslacksquarerootswithintherealembecausethesquareofanyrealnumberisalwaysgreaterthaozero。
Thisistheagiomaketheireopiethatweshalltakeupagaininthefihetimebeimakesomeintroduents。
ThisfirststrueihturywhenItaliaislearnthowtosolvedfreepolyionsinafashiohatusedtosolvequadratis。Theethod,asitcametobeknown,wouldofteninvolvesquarerootsofhoughthesolutioiourobepositiveiagesfromthispoint,theuseofbers,whicharethoseoftheforma+bi,whereaandbareordinaryrealnumbers,wasshowntofacilitateavarietyofmathematicalcals。Forexample,ihturyEulerrevealedaedthestunniioneiπ=-1,whiotfailtosurpriseaheirfirstenter。
Aroundthebeginnihtury,thegeometriterpretationofbersaspointsintheateplaandardsystemofxy-ates),wasiedbyWessellandArgand,fromwhittheuseofthe‘imaginary’becameacceptedasnormalmathematitifyingtheberx+iywiththepointwithates(x,y)allowsexaminationofthebehaviourofbersihebehaviourofpointsintheplahisprovestobeveryilluminatiheoryofso-plexvariables,whosesubjectmatterisrepresentedbyfunplexherthanjustrealnumbers,flourishedspectathehandsofAugustinCauchy(1789–1857)。Itisnowaathematiderpinsmuchnaltheory,airefieldofX-raydiffraisbuiltonbers。Thesenumbershaveprovedtohaverealmeaning,ahesystemispleteinthateverypolyionhasitsfullentofsolutionswithiemofbers。Weshallreturersinthefinalchapter。Befthat,however,weshallierlookmorecloselyattheiureoftherealnumberline。